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The shock wave equations for a perfect gas often provide more than one solution 
to a problem. In  an attempt to find out which solution appears in agiven physical 
situation, we present a linearized analysis of the equations of motion of a flow 
field with a shock boundary. It is found that a solution will be stable when there is 
supersonic flow downstream of the shock, and asymptotically unstable when 
there is subsonic flow downstream of it. It is interesting that both flows are found 
to be stable against disturbances of the d’Alembert type which grow from point 
sources; it is only when larger-scale line sources are considered that one can dis- 
criminate between the stabilities of the two types of flow. The results are applic- 
able to supersonic flow over flat plates a t  incidence, to wedges, and to some cases 
of regular reflexion, diffraction and refraction of shocks. 

1. Introduction 
With given initial and boundary conditions, theory often results in more than 

one solution to a steady-state supersonic flow problem. For example, there are 
two solutions for a shock attached to a sharp wedge or cone and also for regular 
reflexion of a shock a t  a rigid wall, and sometimes there are three solutions for 
the wave confluence of a Mach reflexion, and four for regular refraction of a plane 
shock. Natural phenomena are of course single-valued, so the question to decide 
is the circumstances in which each member of a given set of solutions will appear 
in preference to the others in the real world. 

One method of making the decision amounts to ordering the set on the basis 
of the rate of production of entropy 6’ associated with each element of the set; that 
is, the first element has the smallest 6’, the second the next smallest, and so on. 
When such sets are compared with experimental data it is very often found that 
it is the flow corresponding to  the first element of the set which has appeared. It 
is tempting therefore to invoke the principle of minimum entropy production, 
which has had some success with non-convective systems (Donnelly, Hermann & 
Prigogine 1965; Meijer & Edwards 1970). In  the present context many instances 
can be given where this principle works, namely wedge flow (Bleakney & Taub 
1949), cone flow (Maccoll 1937), regular shock refraction in gases (Jahn 1956) 
and in metals (Laharrague, Morvan & Thouvenin 1968), some cases of shock 
reflexion and diffraction (Bleakney & Taub 1949; Mair 1952; Kawamura & Saito 
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1956), shock intersection (Smith 1959, 1962), and detonation (Zeldovich & 
Kompaneets 1960; Shchelkin & Troshin 1965). In  the last instance the Chapman- 
Jouguet condition is one of minimum 8 and this is the flow which appears if only 
the stronger type of detonation is possible (Courant & Friedrichs 1948). Unfortu- 
nately numerous examples counter to the principle can also be given. One occurs 
a t  a plane rigid wall when there are simultaneous solutions? for regular and Mach 
reflexions. A regular reflexion then appears even if it  has an 6' which is greater 
than those for any of the Mach-reflexion flows. Another counter example is pro- 
vided by the phenomenon of weak detonation, for Zeldovich & Kompaneets 
(1960) have shown that this solution can appear in preference to the strong solu- 
tion when there is a suitable distribution of sparks in the unburnt gas; it  may also 
appear when there is efficient heat transfer - by radiation say -from the reaction 
zone; or it may appear for reactions which are initially exothermic but finally 
endothermic (Landau & Lifshitz 1959), and also for condensation discontinuities 
(Oswatitsch 1956; Landau & Lifshitz 1959). For all those phenomena which are 
of the weak detonation type, the Chapman-Jouguet condition is associated with 
8 being a max&rnurn. Hence the principle of minimum entropy production is an 
unsatisfactory criterion when convection is present. 

Another method of making the decision is to argue that for an incident shock i 
of vanishingly small intensity the solution must be a continuation of one obtained 
from acoustic theory. More precisely, suppose that the amplitude of i declines 
continuously until i becomes a plane acoustic wave, then the element of the 
ordered set whose reflected wave has the same amplitude as the acoustic solution 
is the one chosen to be physically relevant. This approach has been used by 
Bleakney & Taub (1949), Polachek & Seeger (1961) and others. While this is 
successful in some cases, it fails in others. For example it fails to yield any result 
for Mach reflexion, while for regular refraction of shocks it is occasionally con- 
founded by there being two solutions in the acoustic limit (Henderson & 
Macpherson 1968). 

I n  the present paper (part 1) an attempt is made to formulate more satisfactory 
procedures for selecting the correct solution from the ordered set. To this end we 
first exploit an idea due to Landau & Lifshitz (1959), in which a direction is 
assigned to a wave by means of the vector which represents the component of the 
velocity parallel to it. This will often enable us to decide whether the given 
boundary conditions are sufficiently complete to support the flow; if they are not 
then the solution can be discarded from the set. Second, we study the stability of 
the remaining elements of the set with the help of the linearized equations of 
motion of the system. In  order to keep the problem manageable attention is 
restricted to two-dimensional, adiabatic, steady-state flow of an inviscid perfect 
gas. It will be shown that a typical system of this type will be stable when there is 
supersonic flow (V > a)  downstream of its leading shock, and asymptotically 
unstable when there is subsonic flow (V  < a)  downstream of it. 

In  a later paper (part 2) the flow will be treated as a purely mechanical system, 
and in a limited way this will allow some nonlinear effects to be taken into account. 

t These conditions have been worked out by Bleakney & Taub for a diatomic gas with 
ratio of specific heats y = z. 
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0 s 
V > a  V<a 

FIGURE 1. Flows with similar stability problems. (a) Wedge flow, W G {a,, a2}. ( b )  Flat plate 
a t  incidence, F E {a,, as}. (c) Regular shock reflexion, RF {al, a2}. (d )  Regular shock 
intersection, RI E {a1, az}. 

2. Flows similar to a flat plate at incidence 
Supersonic wedge flow is illustrated in figure 1 (a)  for both the physical and the 

shock-polar planes; the wedge angle is 6, and the free-stream Mach number is M,. 
The ordered set of solutions will be written as W = {a,, a2), where a, is the weaker 
and smaller & Bolution and az is the stronger and larger 8 one. The flow is super- 
sonic downstream of the a1 shock except for a small range of values of So near the 
maximum deflexion angle 6 = S,,,. The a2 shock always has subsonic flow 
downstream. Instead of treating the stability of wedge flow it is more convenient 
to treat the equivalent problem of a flat plate at  an incidence angle 6, (figure 1 b) ,  
whose solution set is written as P = {a,, a2}. Now if the stability of the flow can 
be found for each element of the ordered set, then not only will the result be 
known for the flat plate and the wedge, but it will be known for other flows as well. 

48 FLM 75 
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a l  (4 
FIGURE 2. Regular refraction of a shock i at an interface 

mrn, RR F {el, ul, us>. 

For example, the ordered set for the regular reflexion of a plane shock at  a rigid 
wall can be written as R F  = {al, a2} (figure 1 c), and it will be noticed from the 
diagrams that part of this flow can be regarded as that for a flat plate at  an inci- 
dence angle S, = -So and free-stream Mach number M,. In  this case the reflected 
shock r takes the place of the shock i in figure 1 (b ) .  Similarly the regular inter- 
section of two oblique shocks of either equal or unequal strengths can be treated 
in essentially the same way (figure 1 d ) ,  with R I  = {a1, a2}. 

Wave direction 

By making use of an idea due to Landau & Lifshitz (1969, p. 333), we can show 
that regular refraction of a plane shock can also be treated by the same methods. 
Now it is well known that when a gas crosses a shock the component of its velocity 
parallel to the wave is continuous, and the same applies to an expansion wave. 
We shall take the direction of this vector at any point to be the local direction of 
the wave. Furthermore we shall say that a wave arrives at any point which it 
intersects if the vector near the point and on the same side as the disturbance 
producing the wave is directed towards the point. We shall say that the wave 
leaves the point if the vector is directed away from it. A simple example is shown 
for regular reflexion in figure l(c),  where the incident shock i arrives at the 
reflexion point and the reflected shock T leaves the same point. 

As an example of the usefulness of this idea, consider regular refraction of a 
plane shock i a t  an interface between two different gases (figure 2). For slow-fast 
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refraction? the solution set may be written as RR = {el, a,, a,> (Henderson 1966), 
where el represents the solution for a regular refraction with a reflected expansion 
wave e, and the a,, , solutions have reflected shocks. For these three solutions 
the diagrams show that i arrives a t  the refraction point R and t leaves it. However, 
the reflected wave leaves R for the el and az solutions but arrives at R for the 
a, solution. I n  the last case this means that t must be generated by i and r, inter- 
secting at R on the interface between the two gases. Clearly, if this flow is to be 
physically possible an extra boundary in the form say of a wedge must be present 
in order to generate r,, and the apex angle of this new wedge is predetermined by 
the polar diagram, and furthermore its position must be such as to cause r, to be 
focused exactly on the point R where i intersects the interface. This is a familiar 
situation in mechanics where the boundary conditions are often called ‘too strict’ 
for the system to exist in any but the most exceptional circumstances. Such 
systems appear as transitions between systems of different types. In  any event, 
without the very special boundary conditions just mentioned the a, solution 
cannot exist physically and it may be discarded from the set, so that RR, = {el, a,}. 
The polar diagram shows that for the el solution the flow is supersonic down- 
stream of both t and e ,  so that its stability problem should be the same as that for 
the a, elements of the sets W ,  F ,  RF and RI. By contrast, for the a, element of 
RR,, the flow is always subsonic downstream oft and it may be either subsonic or 
supersonic downstream of T,. However, if t can be destabilized by some disturb- 
ance, then r ,  will also be destabilized, so the stability of this solution should be 
similar to that of the a2 elements of W ,  P, BP and RI. 

3. The equations of motion 
To avoid unbounded velocities far downstream, the wall boundary is assumed 

to be of large but finite length. The flow field to be considered for the a, case is 
a supersonic triangular region bounded by the wall, the shock and the first Mach 
line which reaches the shock &om the downstream edge of the wall. The flow field 
is subsonic for the a, case and is again bounded by the wall and the shock, but 
now has a sonic surface joining the downstream edge to the shock. This is 
followed immediately by a Prandtl-Meyer expansion, and the last of its waves to 
meet the sonic line terminates the flow field to be considered, as discussed by 
Guderley (1947, 1962). 

Referring to figure 3, the equations of motion for unsteady, two-dimensional, 
adiabatic flow of an inviscid fluid are as follows (Landau &Lifshitz 1959, pp. 2-4), 
with velocity components (u, v), density p ,  pressure P, speed of sound a, resultant 
velocity V and entropy S. 

Continuity 

t A slow-fast refraction is one for which the speed of sound a, in the incident-shock 
medium is less than that (aJ in the transmitted-shock medium, i.e. a, < aII. Conversely 
a fast-slow refraction is defined by a, > +. 

48-2 
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0 X 

FIGURE 3. Nomenolature. 

Energy 

Potential 

as as as 
at ax ay 
-+u-+v- = 0. 

Then (2) and (3) become 

Ozt+Oz@zz+@u@vz = 

Oy~+@zOz,+@,Oy, = 

Integrating (7) with respect to y gives 
(7) 

wheref(x,t) is an arbitrary function of (x, t) .  Now (8) can also be obtained by 
integrating (6) with respect to x,  but this leads to the arbitrary function 
f ( y ,  t ) ,  and therefore f ( x ,  t )  = f ( y ,  t )  = f ( t ) .  Hence f ( t )  can be removed from the 
equations by the substitution 3 = 0 - j f ( t )  dt. We do this and then drop the 
circumflex on 0, with the net result that f ( x ,  t )  can be set equal to zero. Now 
differentiating ( 8 )  with respect to t we get 
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Next we substitute (5)-(7) and (9) into (I), to obtain behind the shock 

(a2 - CD;) CDzx + (aa - CDE) CD,, - 2<D, <D, CDzg - @,, - 2QX ax, - 2@, CD,, = 0. (10) 

The entropy terms for ( 10) are - p-l( BP/aS), [S, + CD, 8, + CD, S,] but these vanish 
by virtue of (4). The boundary conditions for this equation are 

CD,,=O on y = O ,  (11) 

OZ cos 6 + CD, sin 6 = V, COB w on the shock, (12) 

which is the condition for continuity across the shock of the component of the 
velocity parallel to the wave. Now an oblique shock is completely determined by 
two independent parameters and it will be convenient to take these to be Mo 
and 6. Then 

that is, the velocity is parallel to the surface, and 

0 = apq0, s), 8 = s 2 ( ~ , ,  Q) - S. (13) 

In principle, the form of the function Q may be obtained from equation (A 2) of 
the appendix. It is a smooth bounded function of (Mo,S) outside a small 
neighbourhood of S = So,,,. 

The next step is to linearize these equations by substituting (@)+E$ ,  
(a)  +€a’, (V,) + EV;, ( w )  + EW’, (6) + s6’ and (Mo) +EM; for @, a, V,, o, 8 and Mo 
respectively, and neglecting higher powers of E. Here angular brackets indicate 
mean or zeroth-order components, and E is a small parameter. Taking E = 0, the 
mean equations have solutions of the form (9) = Vx, where V is constant and 
(a)  and (6,) are also constant, i.e. invariant in space and time. There are two 
such solutions, namely a,, with M = V/(a)  > 1, and a2, with M < 1. Substituting 
these solutions into (10)-(13) and retaining only terms of first order in E, the 
linearized perturbation equations are 

(1 - Ma) $xx + 9v, - $rr - 2M92, = 0, (14) 

$,= 0 on y =  0, (15) 

$x cos (0) + sin (0) = V;  cos (w) - w’(&) sin (w)  

+8’Vsin (8) on y = ztan (B), (16) 

where 

and T = {a )  t is a normalized time variable. 

4. Solutions of the linearized equations of motion and their stability 
D’Abmbert-type solutions $A 

Such solutions are well known for (14); see for example Sears (1954, p. 116). 
They are 

$A = g-l [f(a + p% - M x )  + g(a -p”r + Mz)] ,  (18) 

where g = (xa-py2)), p2 3 H2- 1. (19), (20) 
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Making use of these results it is straightforward to construct solutions 9, for 
sinusoidal oscillations in the flow, namely 

where k is a real constant and v is a real positive constant. Now if (14) is to describe 
real disturbances which propagate from a point into the flow it must have real 
characteristics, and by inspection of (18) we see that this requires that v should 
be real for both the a, (V > a) and the a2 ( V < a)  flow. It follows from (21) that 
will be bounded for all ( x ,  y, t )  except (0, 0, t ) .  Hence both the a, and the a2 flow 
will experience conservative oscillations when these disturbances emanating 
from a point in the x, y plane are present, and we conclude that both flows are 
stable against them. This approach therefore fails to discriminate between the 
stabilities of the al and a2 flows, so we shall now investigate the effect that 
larger-scale line disturbances have on the two flows. 

Line-type solutions 
If a solution of the form 

is assumed, then (14) separates, giving 

$(x7 y7 4 = Y(y) E(x, 7 )  

and 

Y,,+A2Y = 0 

p2Exx + 2MEx, + E,, + A2E = 0, 

where h is a constant. Boundary condition (15) becomes 

so that the solution to (23 )  is 
Y, = 0 at y = 0, 

Y ( y )  = coshy. 

( 2 3 )  

(24) 

Thus boundary condition (16) becomes 

Ex cos Ay cos (0)  - AE sin Ay sin (8) = V;  COB ( w )  - w'(Q sin ( w )  + 0'V sin (6) 
(27 1 

E, cos (0 )  cos (Ax tan (0)) - E sin (8) sin (Ax tan (0)) = h(x, 7), - (28 )  

where h(x, T )  is an arbitrary function of x and 7 bounded if V& w' and 8' are 
bounded. 

on y = x tan (0). This is of the form 

Equation (24) has solutions of the form 

E ( x ,  7 )  = A exp [iAP-l(x - ~ N T ) ] ,  (29) 

where the physical solution is the real part of this quantity. This particular 
solution, or linear combinations of it with different values of A, will not in general 
satisfy ( 2 8 ) .  I f  it is assumed that the perturbing function h ( x , ~ )  is such that i t  
does, then the left side of (28) becomes 

AA exp [iAp-l(x - ~ M T ) ]  {ip-l cos (0 )  cos (Ax tan (a) )  
+sin (8 )  sin (Ax tan (6))). (30) 



Multi-valued solutions of steady-state supersonic flow 759 

Now on account of (26 ) ,  h must be real, for otherwise 4 (and therefore u and v )  
will increase indefinitely as y increases. Thus for given non-zero p and (O), the 
quantity in the braces in (30) satisfies 

where El, are positive constants. Thus the perturbing function h(x, 7) remains 
bounded if and only if the same is true of exp [iAP-l(z- ~ M T ) ] .  This will be true 
both as z+co and as T-+W only if Alp and therefore p is real. But by (20) 
this means that the Mach number downstream of the shock must be greater 
than one. 

Thus for the a, shock, which has supersonic flow downstream, the flow experi- 
ences conservative oscillations when the shock does so, and we conclude that the 
flow is stable. On the other hand in the a2 case M is always less than one, and 
conservative oscillations of the shock lead to oscillations in the flow downstream 
of it which increase exponentially with time or with distance. We conclude that 
the a2 flow is asymptotically unstable. 

Remark on the stability of a normal shock 

In the above analysis, we have assumed that the downstream edge of the plate is 
so remote that any disturbances arising from it do not affect the stability of the 
shock at the upstream (leading) edge. For small disturbances, this assumption is 
necessary only for the a2 flow, where M < 1. However, we have also assumed that 
the plate is of finite length; therefore the a2 shock intersects the sonic surface 
which propagates from the downstream edge at some finite value of y. In  the 
limit as 6+0, the a2 shock approaches the normal shock condition and the 
intersection moves towards infinity in the y direction. Thus both the shock 
and the sonic line become normal in the semi-infinite region above the plate. 
If it  could be assumed that the stability of the shock near the wall still depends 
only on perturbations in the same region (i.e. that the boundary conditions 
a t  infinity are not critical), then our analysis (with minor changes) would still 
apply in the limit, so that we could conclude that a normal shock is asympto- 
tically unstable in a semi-infinite region. Of course, there is no way of testing 
this result by experiment. 

The evidence gained from experiment indicates that a shock which is everywhere 
normal to the flow cannot be set up when there is a downstream sonic surface, 
although it is possible for it to be locally normal at  particular points. The only 
way which seems practicable to attain a stable shock which is closely normal 
everywhere is to replace the sonic surface by a piston, or its equivalent, acting 
between parallel walls. To apply this to our problem we introduce asecondplate 
into the flow, which is placed above the first one and parallel to it, and a piston 
moves between them. Then there will exist a normal stationary shock between 
the plates if the piston withdraws downstream a t  the correct velocity. This 
velocity is equal to the difference in the gas velocities on either side of the shock. 
There is no apriori reason why the stability of a shock between two walls should 
be the same as that of a similar shock in a semi-infinite region. 
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Form of the perturbation 

To show the form of perturbation required in order that the solution should have 
the form 

(31) 

given by (22), (26) and (29), consider the case where the perturbations sV6 and 
EM; are zero but the perturbation €8’ is non-zero, that is conditions upstream of 
the shock remain constant but the wedge angle is varied. Then 

$(xJ y, 7) = A exp [iA,d-l(x- ~ M T ) ]  cos Ay 

where according to equations (A 1) and (A 5) of the appendix 

(H,2sin2w- 1) (yM,2ein2w- 1) 
V (y+ 1)2~;s in4w (33) 

I-’. (34) 
al2 sinwcosw (y + 1) Mt sin2 cos2 w - = -  as 

All of the quantities in the last two equations are mean components, the angular 
brackets being omitted for simplicity. Hence if 8’ has the form 

8’(xJ 7) = exp [iA,d-l(x - 2M7)] 

x (sin (8) sin (Ax tan (8)) + ipcos (8) cos (Ax tan (O))}, (35) 

that is a travelling wave of velocity 2 V ,  wavenumber A//3 and amplitude varying 
with x, then the potential behind the shock, once the transients have died out, 
will be given by (30) with 

A = iQ [sin <w> ($) +” sin (8) (( g) - I)]. 
h (v,) 

5. Guderley boundary conditions 
It is natural to inquire if the a2 flow can be stabilized by placing an extra 

boundary in the flow in the manner suggested by Guderley (1947, 1962) for 
transonic flow. I n  this case i t  is more convenient to discuss a wedge flow rather 
than a plate at incidence. Then the Guderley boundary takes the form of a second 
wedge; see figure 4. The apex angle 8, of the second wedge must be such that i t  
exceeds the shock attachment angle for No (8, > amax). Guderley considers con- 
tinuous changes in a boundary parameter, namely the ratio I,/Z, = I,, of the 
lengths of the two wedges. Initially the shock will be detached if I,, + 0, so that 
the apex of the second wedge is very close to that of the first. The parameter I,, is 
now continuously increased so that the second wedge moves downstream, and 
this will cause the shock to approach the apex of the fist  wedge. According to 
Guderley an a2 shock will appear at this apex at the attachment condition I, ,  = I,. 
Any further increase in I,, will cause the shock to pass this apex, resulting in the 
three-shock system shown in figure 4. There will now be an a, shock i on the apex 
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(c) 1 < I ,  
FIamE 4. The Guderley boundary. 

of the first wedge, a detached shock r off the apex of the second wedge and a third 
shock t which arises through the interaction of the other two. This wave system 
persists as I,, becomes indehitely large. We therefore conclude that on the 
continuum 0 < I,, < co there is at most only one value of I,, (= I,) for which the 
a2 shock may appear on the apex of the first wedge, whereas there is a detached 
shock off the wedge for the continuum 0 < lo, < Zh and a three-shock system 
for the continuum 1, < lo, c co. Hence the boundary conditions for the a2 shock 
exist only as a transition between two other systems, and as in the case of the 
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a, refraction in RR,, the boundary condition is ‘too strict’, and the a, shock can 
appear only during the transition. 

Even this last conclusion is a t  most true only for the transonic flows considered 
by Guderley. At larger Mach numbers it is easy to show that there are discon- 
tinuous pressure changes during the transition. Thus the bow shock is normal to 
the boundary streamline a t  N (figure a), so the local pressure ratio across the 
shock a t  N is 

When there is an a2 shock at the first wedge’s apex, the pressure ratio is 

while the pressure ratio across the combined al and bow shock for the three-shock 
system is, a t  the bounding streamline along the first wedge, 

P 

It is clear that in general we have along the bounding streamline 

(39) 

ao that there are discontinuities in the pressure forces during transition. For an 
ideal inviscid gas this means discontinuous accelerations of the gas, so even with 
the Guderley boundary the a2 flow is unstable, and stability is only approached 
in the limit No+ I, in the Guderley sense. 

Appendix. The sign of [a( V/F3/a8lM,, for a1 and a2 flow 

(Mtsin2o- I) (yM;sin2w- 1) 
(y+  1)2M$sin4w 

From Ames (1953), 

(g)2 = 1 - 4  

and cot Gcot w = 8(r+l)Ni - 1 .  
Mi sin2 w - 1 

Eliminating M, sin w between (A 1) and (A 2) we get after some reduction 

v 1 + g y -  1) N ;  + cot Gcot 0 

v, I + * (y  + 1) M i  + cot Gcot 0‘ 
- =  

Now obtain [a( V/v,)/aGIMo from (A 3). The result is 

cosec, 8 cot w + cosec2 w cot 6 awlaG 
[I + +(Y - I) Mi + cot &cot W ]  [I + +(Y + I) Mi + cot G C O ~  w]’  

(A 4) 
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The denominator of (A 4) is always positive; only the numerator N(A 4) can 
change sign. In  order to develop an expression for it, obtain (aw/aS), from (A 2), 
that is 

I-' (y  + lj M i  sin2 w cosa w 

(A 6) 
[ I -  

sin w cos w 
sin6cosS (M~sin2w-1)[l++(y+1)M~-M~sin2w] ' 

($) r -  

Substituting (A 5 )  into the numerator of (A 4) we get 

N(A 4) = - cosecp S cot w 

Only the denominator of (A 6) may change sign, and this happens when it is zero, 
that is when 

y M i  sin2 w = a(y + I) Mg - I + { (y  + 1) [ 1 + &(y - I )  M i  -t &(y + I )  Mi]}*. 

But this is just the condition S = S,,, for there to be maximum streamline 
deflexion across an oblique shock wave (Ferri 1949, p. 47), that is, where the 
a, and a, branches join on the shock polar. We can now determine the sign of 
[a( VpO)/aS], for a,, by allowing No sin w -+ 1 as for a weak shock. It follows that 
N(A4) > 0, and therefore from (A4) 

(A 7) 

(T) < 0 for the 01, (V > a) flow. 
3 1 0  

Conversely, for the a2 flow we alIow No sin w -+ No (normal shock), and this shows 
that N(A4) < 0, and hence 

('9) > 0 for the a2 (V  < a)  flow. 
Mo 

Hence a small quasi-static increase in S decreases the velocity behind the shock 
for the a, flow. It simultaneously increases the pressure, as can be seen from the 
polar. This will provide a restoring force which will be opposed to the change in 6. 
This supports the idea that the a, flow is stable. The converse is true for the 
a2 flow. We take these considerations up in detail in part 2. 
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